Holomorphic Poisson Structures and Groupoids
نویسندگان
چکیده
We study holomorphic Poisson manifolds, holomorphic Lie algebroids and holomorphic Lie groupoids from the viewpoint of real Poisson geometry. We give a characterization of holomorphic Poisson structures in terms of the Poisson Nijenhuis structures of Magri-Morosi and describe a double complex which computes the holomorphic Poisson cohomology. A holomorphic Lie algebroid structure on a vector bundle A → X is shown to be equivalent to a matched pair of complex Lie algebroids (T 0,1X,A1,0), in the sense of Lu. The holomorphic Lie algebroid cohomology of A is isomorphic to the cohomology of the elliptic Lie algebroid T 0,1X ⊲⊳ A1,0. In the case when (X,π) is a holomorphic Poisson manifold and A = (T X)π, such an elliptic Lie algebroid coincides with the Dirac structure corresponding to the associated generalized complex structure of the holomorphic Poisson manifold. We also show that a holomorphic Lie algebroid is integrable if, and only if, its underlying real Lie algebroid is integrable. Thus the integrability criteria of Crainic-Fernandes do also apply in the holomorphic context without any modification. Research supported by the European Union through the FP6 Marie Curie R.T.N. ENIGMA (Contract number MRTN-CT-2004-5652). Research partially supported by NSF grants DMS-0306665 and DMS-0605725 & NSA grant H98230-06-1-0047 1
منابع مشابه
Dirac submanifolds and Poisson involutions
Dirac submanifolds are a natural generalization in the Poisson category for symplectic submanifolds of a symplectic manifold. In a certain sense they correspond to symplectic subgroupoids of the symplectic groupoid of the given Poisson manifold. In particular, Dirac submanifolds arise as the stable locus of a Poisson involution. In this paper, we provide a general study for these submanifolds i...
متن کاملIntegration of Twisted Poisson Structures
Poisson manifolds may be regarded as the infinitesimal form of symplectic groupoids. Twisted Poisson manifolds considered by Ševera and Weinstein [14] are a natural generalization of the former which also arises in string theory. In this note it is proved that twisted Poisson manifolds are in bijection with a (possibly singular) twisted version of symplectic groupoids.
متن کاملPoisson Geometry with a 3-form Background
We study a modification of Poisson geometry by a closed 3-form. Just as for ordinary Poisson structures, these “twisted” Poisson structures are conveniently described as Dirac structures in suitable Courant algebroids. The additive group of 2-forms acts on twisted Poisson structures and permits them to be seen as glued from ordinary Poisson structures defined on local patches. We conclude with ...
متن کاملGauge equivalence of Dirac structures and symplectic groupoids
We study gauge transformations of Dirac structures and the relationship between gauge and Morita equivalences of Poisson manifolds. We describe how the symplectic structure of a symplectic groupoid is affected by a gauge transformation of the Poisson structure on its identity section, and prove that gauge-equivalent integrable Poisson structures are Morita equivalent. As an example, we study ce...
متن کاملSymplectic Groupoids and Poisson Manifolds
0. Introduction. A symplectic groupoid is a manifold T with a partially defined multiplication (satisfying certain axioms) and a compatible symplectic structure. The identity elements in T turn out to form a Poisson manifold To? and the correspondence between symplectic groupoids and Poisson manifolds is a natural extension of the one between Lie groups and Lie algebras. As with Lie groups, und...
متن کامل